
Walking the Bifrost:
An Operator's Guide to Heimdal &

Kerberos on macOS

Cody Thomas

Objective By The Sea 3.0

March 2020

WHO AM I?

Cody Thomas - @its_a_feature_

● Operator / Instructor at SpecterOps

● Open Source Developer

○ Apfell – Red Team C2 Framework

○ Bifrost – Kerberos Manipulation

○ Orchard – Open Directory Access

○ GitHub: https://github.com/its-a-feature

https://github.com/its-a-feature

OVERVIEW

● Brief intro to Kerberos
○ What is it / How does it work / Why do we care?

● Attacking Active Directory Kerberos from macOS
○ Credential Storage / Theft

○ Common Attacks

● Other Kerberos details on macOS
○ LKDC

KERBEROS INTRODUCTION
A brief overview

KERBEROS 101

● What is Kerberos?
○ Authentication mechanism invented by MIT in 1980s

○ Designed for use on insecure networks

○ Uses math and cryptography to provide strong guarantees

○ Based on a client/server model - stateless

○ Uses ASN.1/DER encoding of data

○ Scoped to ‘realms’ of authentication

● Many implementations
○ Traditional MIT (with plugins)

○ Windows

○ macOS

KERBEROS 101 – AUTH STEPS

1. Client and Key Distribution Center (KDC) have shared secret
○ Think of the KDC like an all-knowing PKI management server

2. Client makes a request to the Authentication Server (AS) to be

authenticated with the shared secret – i.e. an AS-REQ
○ AS forwards request to the KDC, typically these are the same machine

3. AS responds with a ticket to the krbtgt SPN and encrypts a portion

with the krbtgt hash. This ticket is called a Ticket Granting Ticket

(TGT). This is an AS-REP.
○ The TGT proves you are who you say you are to the KDC because of the

encrypted portion

○ Think of this like a new username/password combination

KERBEROS 101 – AUTH STEPS

4. Client presents their TGT to the Ticket Granting Service (TGS) and

requests to speak to a specific service – i.e. TGS-REQ

5. TGS responds with a ticket to the service and encrypts a portion with

the service account’s hash (another shared secret)
○ This is a TGS-REP. The ticket is a Service Ticket

6. Client presents Service Ticket to the service and requests services

7. Service checks ticket to determine if the client is authorized for access
○ Service validates the ticket due to the shared secret the service has with the KDC

KERBEROS 101 - EXTRAS

● The KDC is bound to a ‘realm’ that it knows about

○ In Windows, this is the Fully Qualified Domain Name (FQDN) of AD

○ Technically, can be anything though

● Tickets have expiration times
○ Tickets can potentially be renewed or revoked

● Services are requested via Service Principal Name (SPN)
○ A combination of the service and the computer that hosts the service

○ Must be an exact match (no IP addresses, use hostnames)

KERBEROS – WHY CARE?

As a Red Teamer:

● User passwords only get you so far
○ Sometimes hard to get on macOS

● Kerberos tickets are just as valuable

● Potentially less protected

● More moving pieces makes

it harder to change

As a Blue Teamer:

● More authentication logs for correlation

● More credential material to track

● You might be using it and not even know it

WINDOWS ACTIVE DIRECTORY & HEIMDAL
A case study in Windows attacks from a macOS perspective

WHAT / WHO IS HEIMDAL?

• Heimdall in Norse Mythology guards the Bifrost (rainbow road) in
Asgard (where Thor, Loki, Odin, etc live)

• Heimdal is Apple’s slightly tweaked implementation of Kerberos

• We’ll cover those differences
as we go along

• This is Marvel’s version ->

HOW TO USE HEIMDAL

• macOS has a Kerberos framework we can import into XCode

• Throughout these slides we’ll use these API calls in Objective C

• There are other implementations out there in scripting languages

• According to Apple, all 3rd party scripting languages should be removed
soon TM, so we should pretend they’re already gone from a Red Team
perspective

• We will manually craft the network traffic to TCP port 88

• We will use the user TEST\test_lab_admin in the test.lab.local
domain on the spooky.test.lab.local computer

HOW TO USE HEIMDAL

STAGE 1 – THE SHARED SECRET

1. Client and Key Distribution Center (KDC) have shared secret

• In Windows, you don’t send your password around, you use a hash

• Active Directory knows this hash, not your plaintext password

• AD knows many hashes of your password to be able to support a wide
range of system versions

• We need to convert our password to a hash, but what kind?

• RC4, AES128, AES256, DES3, etc

STAGE 1 – THE SHARED SECRET

• Heimdal has us covered:

krb5_c_string_to_key(context, ENCTYPE, &password, &salt, &newKey);

• ENCTYPE
• ENCTYPE_ARCFOUR_HMAC – unsalted NTLM

• ENCTYPE_AES128_CTS_HMAC_SHA1_96 – salted AES128

• ENCTYPE_AES256_CTS_HMAC_SHA1_96 – salted AES256

• Salt?
• If normal account: DOMAINFQDNusername

• If computer account: DOMAINFQDNhostusername.domainfqdn

• RC4 hashes are so enticing because they’re not unique across domains and are
easier to crack

STAGE 1 – THE SHARED SECRET

• If you’re curious how to
get your computer$
shared secret, you can
reveal it with admin
credentials from the
SYSTEM Keychain

• Found under
/Active Directory/
NETBIOS Name

• Also found via dscl
(Open Directory)

STAGE 1 – THE SHARED SECRET

STAGE 1.5 – SAVING HASHES

• What if you can’t be bothered to keep typing your password each
time to generate that shared secret?

• Keytabs

• A table of keys associated with various accounts

• System generated (/etc/krb5.keytab)

• Your system has one for hashes of its own computer$ account

• Need to be root to access

• User generated

• Users can generate their own at any time (yikes!)

STAGE 1.5 – SAVING HASHES

• [[Bifrost keytab dump]]

Same hash we generated

manually with Bifrost

Backing account for VNC is

spooky$

STAGE 1 ATTACKS

• If you compromise the user’s plaintext password:

• You can generate their shared secret and continue the rest of the
process

• If you compromise the user’s / computer$ shared secret (hash):

• You can continue the process because the plaintext is only used to
generate the shared secret

• Typically called “Over-Pass-The-Hash” or “Pass-The-Hash” in windows
depending on if you’re messing with LSASS

• If you get the user’s RC4 secret, you can attempt to crack it

• This allows you to “be” that user/account

STAGE 2 – AS-REQ
FOR TGT

• Sending a request to the
Authentication Server (AS) for a
TGT

• Uses ASN.1 Encoding for structure

• Need to prove we know the secret
from stage 1 somewhere

• PADATA section for this called
PADATA-ENC-TIMESTAMP

• You guessed it, we’ll encrypt a
timestamp with the hash as proof

STAGE 2 – AS-REQ FOR TGT

• Remember: it all boils down to a ticket request with a few things:

• Who we are

• Proof of who we are

• What service we want a ticket for

• In this section, we request a ticket (TGT) that can be used with the Ticket
Granting Service (TGS)

• We say who we are and prove it with the encrypted timestamp

• TGT requests have a Service Principal of krbtgt for the realm

STAGE 2 – AS-REQ FOR TGT

STAGE 2 – ATTACKS

• Note: in pure MIT Kerberos we don’t do this encryption
• Any user requests a TGT for any other user. The resulting TGT is

encrypted with the target user’s shared secret (hash).

• The idea being that only the right user can decrypt.

• Very trusting

• This is the idea behind AS-REP roasting
• This requirement can be added to MIT Kerberos with a PKINIT plugin.

STAGE 3 – AS-REP WITH TGT

• AS and KDC validate what was sent:

• Does the user requested exist?

• And is it active?

• Is this KDC authoritative over the requested realm?

• Does the KDC have a hash for that user of the requested type?

• Using that user’s hash, can the KDC decrypt that encrypted timestamp?

• Is that encrypted timestamp within the past 5 min?

• If KDC answered YES to all the above, success! We can get a TGT

• If KDC answered NO to any, we get a KRB_ERROR reply with why

• Many legit reasons for this*

STAGE 3 – AS-REP
WITH TGT

• AS-REP repeats a lot of our
request information

• The protocol is stateless, so it
repeats a lot

• Element 5 is the TGT

• That contains our information
encrypted with the krbtgt hash

• Element 6 is special

• That contains a blob encrypted
with our shared secret

STAGE 3 – AS-REP
WITH TGT

• Decrypted section contains
valuable information:

• New session key

• Lifetime of TGT

• TGT usage flags

• Renewable, forwardable, etc

STAGE 3.25 – WHERE DOES THE
TGT GO?

• macOS stores tickets in a format called ccache (credential cache)

• By default, these ccache entries are managed by a KCM

• In normal Kerberos land this is referred to as API storage

• We transparently interface with a daemon process to access the tickets

• Each ccache is assigned a random UUID

• There’s one principal (the client)

• There can be multiple tickets

• You can have multiple ccaches and swap between them

• You can also force save these ccaches to files on disk (yikes!)

STAGE 3.25 – WHERE DOES THE
TGT GO?

• [[Bifrost ticket dump]]

STAGE 3.5 – TICKET PORTABILITY

• What if you want to take a ticket from one computer and use it on
another?

• No worries! Kerberos is stateless and doesn’t track where tickets are
used or generated

• We can use the Kirbi format to save all the necessary info

• Stores information from the AS-REP

• I.E. the TGT and that special encrypted data

• Saves it in a new Application 22 in ASN.1

STAGE 3.5 – TICKET PORTABILITY

STAGE 3.75 –
PASSING TICKETS

• How do we import these tickets
we’ve converted to Kirbi?

• We convert them to krb5 cred
entries (i.e. ccache)

• We need to resolve the desired
ccache name

• Or create a new ccache entry

• Add them to list within the
ccache

STAGE 3.75 – PASSING TICKETS

• [[Bifrost ptt]]

STAGE 3 – ATTACKS

• If the krbtgt hash is stolen, create your own AS-REP (i.e. TGT)

• The ‘Golden Ticket’

• Dump user’s tickets from KCM and impersonate them

• Ticket Theft

• Request Tickets for another user and crack the response

• AS-REP Roast

STAGE 4 –
TGS-REQ FOR

SERVICE TICKET

• Similar process to Stage 2, just
different material

• Requesting a ticket to a service
(not krbtgt)

• Usually something like CIFS
for access to the file system

• Using our TGT as proof of
identity instead of encrypted
timestamp

• More encrypted timestamps and
checksums, but with session
key

STAGE 4 – TGS-REQ FOR
SERVICE TICKET

• Any user with a valid TGT can request a Service Ticket to any
service

• Remember, there’s no authorization checks happening here, only
authentication

• Services must have a backing Service Principal Name (SPN) in
Kerberos

• i.e. cifs/spooky.test.lab.local is a SPN

• These must be requested exactly as they are registered within
Kerberos, otherwise they won’t be found

• Can request a service ticket and specify any encryption scheme

STAGE 5 – TGS-REP WITH
SERVICE TICKET

• TGS and KDC validate what was sent:

• Can the krbtgt hash decrypt the embedded TGT?

• Was that TGT created with the past 20 min?

• if so, assume still valid

• If not, validate the information in it, since it might have changed

• Does the requested SPN exist?

• Is there an associated account and shared secret the KDC knows?

• If yes to all of the above, success! You get a service ticket!

• If no to any, you get a KRB_ERROR and a reason why

STAGE 5 – TGS-REP WITH
SERVICE TICKET

• Almost the same structure as the AS-REP

• Element 5 is special:

• This is the Service Ticket

• Notice the enctype here is RC4 when we requested
AES256

• The last piece in this element is a blob encrypted
with the service account’s shared secret

• It contains information about the client requesting
access

• Element 6 is special:

• This is data about the Service Ticket

• This is encrypted with our session key

STAGE 5 – TGS-REP
WITH

SERVICE TICKET

• Decrypted section contains
valuable information:

• The lifetime of the ticket

• New session key

• This matches the encryption
type used with the Service’s
shared secret

• Usage flags

STAGE 5.25 – WHERE DOES THE
SERVICE TICKET GO?

• All tickets are automatically saved to the default ccache

• This means Service Tickets and the TGT are in the same place

• [[ticket dump with service tickets]]

STAGE 5 - ATTACKS

• If you know the shared secret of the service account, you can make
your own Service Tickets to that service

• i.e. ‘Silver Tickets’

• If you use a valid TGT and request Service Tickets in RC4, then you
can try to crack the associated account’s password

• i.e. ‘Kerberoasting’

HEIMDAL WITHOUT ACTIVE DIRECTORY
The macOS local key distribution center

I DON’T HAVE AD, WHAT NOW?

• Fear not! You’re still using
Heimdal

• Starting with OSX 10.5,
Apple introduced “Back To
My Mac (BTMM)”

• The goal was to allow users
to directly connect to other
mac devices to share
screens, mount volumes, or
perform remote
management

• You can see these options
in the “Sharing” settings

HOW?

• Apple said that starting in 10.14 Mojave that BTMM is no longer
included, but the components are still there and leveraged

• So, when you remotely connect to a mac with a local account, what’s
happening?

• You’re using Heimdal to authenticate, get tickets, and access resources

• Select services open the Kerberos port (88)

• But there’s no AD and no “Domain”, so what’s happening?

LOCAL KEY DISTRIBUTION
CENTER

• On your computer’s first boot, the system
generates a self-signed certificate

• com.apple.kerberos.kdc

• This certificate is stored in the System Keychain

• The “realm” for this Heimdal instance is based on
the SHA-1 hash of this certificate

LKDC:SHA1.B58C56AD77898DE69AAEFD22A538D6EDDE
FF8D47

COM.APPLE.KERBEROS.KDC

• /System/Library/LaunchDaemons/
com.apple.Kerberos.kdc.plist

• Can see this launch daemon running
or not on your box to see if you’re
sharing any of the listed services

• Can use launchctl to see if this
daemon is running

LKDC - SERVICES

• /etc/krb5.keytab
• Stores the keys for the various system services offered by Kerberos (must be root)

• 4 default services with LKDC:
• afpserver

• cifs

• vnc

• Host

• SPNs of the form:
• Service/realm

• Service Tickets use this shared
secret!!

LKDC – _KRBTGT HASHES

• /usr/libexec/configureLocalKDC
• Generates a new com.apple.kerberos.kdc certificate (idempotent)

• If a new one is generated, updates the /etc/krb5.keytab with new Realms

• This also updates the _krbtgt hashes stored in the local Open Directory Node

• dscl . read /Users/_krbtgt KerberosKeys
AES256 Salted Hash

AES128 Salted Hash

des3-cbc-sha1-kd

LKDC – AS-REQ1
• Now let’s say we want to mount a volume on another mac, but we

don’t know that mac’s LKDC realm and we don’t know the full shared
secret, just the plaintext password

• Make an AS-REQ for a generic

realm:
• WELLKNOWN:COM.APPLE.LKDC

• Kerberos responds with generic

error specifically to call out real

realm

LKDC – PA-FX-COOKIE

• We now know the realm, we still don’t know the shared secret

• The LKDC uses the Secure Remote Protocol (SRP) for this

• It’s a method of key exchange based on crypto

• It’s integrated into the Kerberos implementation

• Kerberos is stateless though?

• RFC613 added a way to manage state within Kerberos:

• PA-FX-COOKIE (133) can be passed with other PADATA fields

• Same area as our PA-ENC-TIMESTAMP

• We need to capture and relay this with every request to keep state

LKDC – USER PASSWORDS

• Ok, we have a way to keep state and we know the realm, but we still
need to get that shared secret

• Passwords on macOS aren’t saved in plaintext, instead they’re passed
through a PBKDF2 function to generate a new, longer password

• You can see your ShadowHashData by looking into your Open
Directory Local Node as root – Using Orchard (OSS) or built in:
dscl . read /Users/itsafeature ShadowHashData

LKDC –
SHADOWHASHDATA

• Salted-SHA512-PBKDF2

• Many iterations (80k+) with a
salt.

• Designed to be slow and unique

• Used when you sign in

• SRP-RFC5054-4096-
SHA512-PBKDF2

• This is the server-side shared
secret for Kerberos traffic

• This is called the “Verifier”

Verifier is based on user’s password

V=gx

where x = H(s | H(I | “:” | P))

LKDC – AS-REQ2

• We can make a slightly modified

AS-REQ again, this time

specifying the real realm of the

remote LKDC

• Notice that we still aren’t doing

anything to prove we are who we

say we are

LKDC – AS-REP2

• To generate the client-side secret, need to pass the plaintext user

password, this 16-Byte salt, and the number of iterations into a PBKDF2

function with SHA512 to generate a 4096Bit key

• This comes from the group: SRP-RFC5054-4096-SHA512-PBKDF2

• We finally we’re starting the

SRP process

• We need to track that we’ve

started, so we’ll start getting

those PA-FX-COOKIES

LKDC – TICKETS AND STORAGE

• With a few more requests back-and-forth AS-REQ requests, we can
successfully generate a new shared key between both parties
without transmitting any credential material (just sending big
numbers)

• We can then treat this TGT like any other normal TGT and use it to
request Service Tickets like normal for the remote mac

• What gets stored in our credential cache though?

LKDC – CCACHE ENTRIES

Normal Kerberos
So What’s this??

LKDC – CCACHE ENTRIES

Plaintext Password!!

Associated Remote

Username

Remote Computer Name

LKDC - ATTACKS

• If you get the user’s password

• You can do everything manually / normally and impersonate the user

• If you get the _krbtgt hash
• You can generate your own TGT as anybody to the LKDC

• Same as a ‘Golden Ticket’, but just to that Mac

• If you get the hashes from /etc/krb5.keytab

• You can impersonate anybody to those services

• Same as ‘Silver Ticket’, but in this case it might as well be a ‘Golden Ticket’

• Stealing the user’s SRP Verifier

• You can brute-force try to crack the user’s password

LKDC - ATTACKS

• If you get the user’s KerberosKeys Open Directory Attribute

• dscl . read /Users/itsafeature KerberosKeys

• You can try to decrypt the AES256, AES128, or des3-cbc-sha1 (INTEGER 16 in

ASN.1 encoding) keys to get the user’s plaintext password

AES256 Salted Hash

Salt

LKDC - SUMMARY

• You’re running Heimdal on your macOS computer.

• How often do you change your password?
What about your _krbtgt password?
What about your computer’s password?

• LKDC should not come into play if you’re AD joined

• Realistically, it just doesn’t come into play with AD users

• Still comes into play with local user accounts

• The tickets in your ccache are flushed periodically

• LKDC tickets are flushed when you’re no longer using the them

• i.e. unmount that shared drive, disconnect VNC, etc

THANK YOU – QUESTIONS?

• Bifrost
• https://github.com/its-a-feature/bifrost

• Will release updated code for LKDC interaction

• Still need to add in Silver/Golden ticket generation

• Blog on the topic with video demo:

• https://posts.specterops.io/when-kirbi-walks-the-bifrost-4c727807744f

• Using a captured hash to get a TGT, inject ticket, get a CIFS service ticket, then
mounting a remote share with those tickets

https://github.com/its-a-feature/bifrost
https://posts.specterops.io/when-kirbi-walks-the-bifrost-4c727807744f

